greatest common divisor - definition. What is greatest common divisor
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

LARGEST DIVISOR OF TWO INTEGERS OR POLYNOMIALS
Highest common factor; Greatest common denominator; Greatest common factor; Greatest Common Divisor; Common Factor; Highest common denominator; Common factor; Highest common divisor; Greatest Common Factor; NWD (mathematics); Q B Over M; B Q Over M; Common divisor; Greatest common measure
  • A 24-by-60 rectangle is covered with ten 12-by-12 square tiles, where 12 is the GCD of 24 and 60. More generally, an ''a''-by-''b'' rectangle can be covered with square tiles of side length ''c'' only if ''c'' is a common divisor of ''a'' and ''b''.
  • ellipses]] (i.e. omission of dots due to the extremely high density).
  • Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2.

greatest common divisor         
<mathematics> (GCD) A function that returns the largest positive integer that both arguments are integer multiples of. See also Euclid's Algorithm. Compare: {lowest common multiple}. (1999-11-02)
Greatest common divisor         
In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted \gcd (x,y).
highest common factor         
¦ noun the highest number that can be divided exactly into each of two or more numbers.

ويكيبيديا

Greatest common divisor

In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted gcd ( x , y ) {\displaystyle \gcd(x,y)} . For example, the GCD of 8 and 12 is 4, that is, gcd ( 8 , 12 ) = 4 {\displaystyle \gcd(8,12)=4} .

In the name "greatest common divisor", the adjective "greatest" may be replaced by "highest", and the word "divisor" may be replaced by "factor", so that other names include highest common factor (hcf), etc. Historically, other names for the same concept have included greatest common measure.

This notion can be extended to polynomials (see Polynomial greatest common divisor) and other commutative rings (see § In commutative rings below).